Stability Analysis of Scalar Advection-Diffusion Equation
نویسنده
چکیده
This note recounts detailed stability and accuracy analysis of a scalar advection-diffusion equation.
منابع مشابه
Approximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملA first-order system approach for diffusion equation. II: Unification of advection and diffusion
In this paper, we unify advection and diffusion into a single hyperbolic system by extending the firstorder system approach introduced for the diffusion equation in [J. Comput. Phys., 227 (2007) 315-352] to the advection-diffusion equation. Specifically, we construct a unified hyperbolic advection-diffusion system by expressing the diffusion term as a first-order hyperbolic system and simply ad...
متن کاملGalerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines
In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.
متن کاملAnalysis of an Interface Stabilized Finite Element Method: The Advection-Diffusion-Reaction Equation
Analysis of an interface stabilised finite element method for the scalar advectiondiffusion-reaction equation is presented. The method inherits attractive properties of both continuous and discontinuous Galerkin methods, namely the same number of global degrees of freedom as a continuous Galerkin method on a given mesh and the stability properties of discontinuous Galerkin methods for advection...
متن کاملStability Criterion for Explicit Schemes (Finite-Difference Method) on the Solution of the Advection-Diffusion Equation
The numerical solutions of the advection-diffusion equation are themselves numerous and sometimes very sophisticated, in order to avoid two undesirable features: oscillatory behavior and numerical diffusion. It is known that the common practice of “splitting-up” the solution is not always the best approach to the advection-diffusion problem. By using the ordinary differential equation analogy m...
متن کامل